

GA-140-SC Light-Curable Low-Outgassing FIP Gasket with See-Cure Technology

APPLICATIONS

- Fuel Cells
- Automotive Door Handles
- Appliance Housings
- Critical Electronic Assemblies
 and Devices

FEATURES

- Blue-to-Colorless Upon
 Sufficient Exposure to Light
- UV/Visible Light Curable
- Cures Soft and Tack Free
- Excellent Tear Resistance
- Cures in Seconds
- Silicone Free
- Conforms to Intricate Channels

SURFACES

- Nylon
- Most Plastics (ABS, PVC, PC, PMMA)

Dymax Form-In-Place (FIP) and Cure-In-Place (CIP) Gasketing Resin GA-140-SC is formulated for fuel cell, automotive door handle, appliance housing, and critical electronic assembly and device applications which require soft, tack-free, low-outgassing, flexible gaskets with compression set. GA-140-SC has good adhesion to nylon and plastic surfaces. It can be dispensed in intricate and complex configurations with the added benefit of curing in-line which allows for increased production speed and reduced inventories. Formulated with patented Dymax See-Cure technology, the product dispenses blue and transitions to colorless upon full cure. This aids in verification of adhesive placement and validation of manufacturing processes. Dymax gasketing resins contain no nonreactive solvents and cure upon exposure to light. Their ability to cure in seconds enables faster processing, greater output, and lower assembly costs. When cured with Dymax light-curing spot lamps, focused-beam lamps, or flood lamps, they deliver optimum speed and performance for maximum efficiency. Dymax lamps offer the ideal balance of UV and visible light for the fastest, deepest cures. This product is in full compliance with RoHS directives 2015/863/EU.

TYPICAL UNCURED PROPERTIES *				
Property	Value	Test Method		
Solvent Content	No Nonreactive Solvents	N/A		
Chemical Class	Acrylated Urethane	N/A		
Appearance	Dark Blue Gel	N/A		
Solubility	Organic Solvents	N/A		
Density, g/ml	1.02	ASTM D1875		
Viscosity, cP (20 rpm)	45,000 nominal	ASTM D2556		

CURED MECHANICAL PROPERTIES *				
Property	Value	Test Method		
Durometer Hardness	A35	ASTM D2240		
Tensile at Break, MPa [psi]	0.8 [126]	ASTM D638		
Elongation at Break, %	187	ASTM D638		
Modulus of Elasticity, MPa [psi]	0.3 [52]	ASTM D638		
Compression Set, % (85°C, 22 hr)**	13	ASTM D395		

* Not Specifications

OTHER CURED PROPERTIES *				
Property	Value	Test Method		
Linear Shrinkage, %	0.6	ASTM D2566		
Boiling Water Absorption, % (2 hr)	3	ASTM D570		
Water Absorption, % (25°C, 24 hr)	2	ASTM D570		
Appearance	Clear	N/A		

REV. 12/21/2018

© 2018 Dymax Corporation. All rights reserved. All trademarks in this guide, except where noted, are the property of, or used under license by Dymax Corporation, U.S.A. Technical Data Collection Prior to 2010

Dymax Corporation +1.860.482.1010 | info@dymax.com | <u>www.dymax.com</u> Dymax Europe GmbH +49 611.962.7900 | info_de@dymax.com | <u>www.dymax.de</u> Dymax Engineering Adhesives Ireland Ltd. +353 21.237.3016 | info_ie@dymax.com | <u>www.dymax.ie</u> Dymax Oligomers & Coatings +1.860.626.7006 | info_oc@dymax.com | www.dymax-oc.com

Dymax UV Adhesives & Equipment (Shanghai) Co. Ltd. +86.21.37285759 | dymaxasia@dymax.com | www.dymax.com.cn

Dymax UV Adhesives & Equipment (Shenzhen) Co. Ltd. +86.755.83485759 | dymaxasia@dymax.com | www.dymax.com.cn Dymax Asia (H.K.) Limited +852.2460.7038 | dymaxasia@dymax.com | www.dymax.com.cn

Dymax Asia Pacific Pte. Ltd. +65.6752.2887 | info_ap@dymax.com | <u>www.dymax-ap.com</u>

Dymax Korea LLC +82.2.784.3434 | info_kr@dymax.com | www.dymax.com/kr

N/A Not Applicable

^{***} Compression set is expressed as percentage of deflection per ASTM D395 Method B at 25% deflection. To determine percent recovery, subtract ¼ of the value from 100%. For example, the recovery is 98.8% with a 5% compression set.

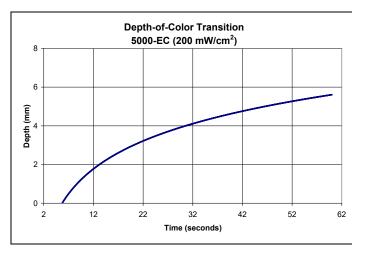
BOYMAX

Protective Resins

CURING GUIDELINES

The blue color of this Dymax See-Cure resin transitions to clear when it is fully cured. Cure rate is dependent upon many variables, including lamp intensity, distance from the light source, and required depth of cure. The chart below provides information on how long it takes to complete the transition from blue to clear using different light sources. The cure time listed below is based upon lab tests and is intended for reference only. Cure time is defined as the time to achieve a full cure of a 3.2 mm [0.13 in] thick gasket.

Recommended Minimum Cure Intensity	Cure Time
150 mW/cm ^{2 A}	14 sec


A Intensity was measured over the UVA range (320-395 nm) using a Dymax ACCU-CAL™ 50 Radiometer.

Full cure is best determined empirically by curing at different times and intensities, and measuring the corresponding change in cured properties. Full cure is defined as the point at which more light exposure no longer improves cured properties. Higher intensities or longer may degrade Dymax light-curable resins.

Dymax recommends that customers employ a safety factor by curing longer and/or at higher intensities than required for full cure. Although Dymax Application Engineering can provide technical support and assist with process development, each customer must ultimately determine and qualify the appropriate curing parameters required for their unique application.

DEPTH-OF-COLOR TRANSITION

The graph below shows the increase in depth-of-color transition as a function of exposure time. A 9.5 mm [0.37 in] diameter specimen was cured in a polypropylene mold and cooled to room temperature. It was then released from the mold and the color transition depth was measured.

GA-140-SC Product Data Sheet

OPTIMIZING PERFORMANCE AND HANDLING

- This product cures with exposure to UV and visible light. Exposure to ambient and artificial light should be kept to a minimum before curing. Dispensing components, including needles and fluid lines, should be 100% light blocking, not just UV blocking.
- All surfaces in contact with the resin should be clean and free from grease, mold release, or other contaminants prior to dispensing the gasketing resin.
- Oxygen in the atmosphere may inhibit surface cure. Surfaces exposed to air may require higher intensity UV (> 100 mW/cm²) to produce a tack-free cure. Flooding the bond area with an inert gas, such as nitrogen, can also reduce the effects of oxygen inhibition.
- 4. Part should be allowed to cool after cure before testing.
- Light curing generally produces some heat. If necessary, cooling fans can be placed in the curing area to reduce the heating effect on components.
- 6. At the point of curing, an air exhaust system is recommended to dissipate any heat and vapors formed during the curing process.
- 7. Cure speed is dependent upon many variables, including lamp intensity, distance from the light source, required depth of cure, bond gap, and percent light transmission of the substrate.

DISPENSING THE GASKETING RESIN

This material may be dispensed with a variety of semi-automated and fully automated fluid delivery systems. Small area applications including beads and small dots can be achieved using Dymax Model 400 needle valve systems. The value system can be used in a semi-automated or fully automated application. Dymax has several other dispensing systems that may be suitable for use with our gasket materials. Questions relating to and defining the best fluid delivery system and curing equipment for specific applications should be discussed with the Dymax Application Engineering Team.

STORAGE AND SHELF LIFE

Store the material in a cool, dark place when not in use. Do not expose to visible or UV light. This product may polymerize upon prolonged exposure to ambient and artificial light. Keep covered when not in useThis material has a 12-month shelf life from date of manufacture, unless otherwise specified, when stored between 10°C (50°F) and 35°C (90°F) in the original, unopened container. GA-140-SC in pails may exhibit a hazy, whitish appearance after exposure to cold temperatures. If such an appearance is noticed, the material should be placed in an ambient environment of $20 - 24^{\circ}C$ ($68 - 75^{\circ}F$) for at least three days. We do not recommend accelerating the warming with additional heat as it will adversely impact the uncured material. After the recommended warming-up step, the clear material is suitable for its intended use.

CLEANUP

Uncured material may be removed from dispensing components and parts with organic solvents. Cured material will be impervious to many solvents and difficult to remove. Cleanup of cured material may require mechanical methods of removal.

GENERAL INFORMATION

This product is intended for industrial use only. Keep out of the reach of children. Avoid breathing vapors. Avoid contact with skin, eyes, and clothing. Wear impervious gloves. Repeated or continuous skin contact with uncured material may cause irritation. Remove material from skin with soap and water. Never use organic solvents to remove material from skin and eyes. For more information on the safe handling of this material, please refer to the Safety Data Sheet before use.

The data provided in this document are based on historical testing that Dymax performed under laboratory conditions as they existed at that time, and are for informational purposes only. The data are neither specifications nor guarantees of future performance in a particular application. Dymax does not guarantee that this product's properties are suitable for the user's intended purpose.

Numerous factors—including, without limitation, transport, storage, processing, the material with which the product is used, and the ultimate function or purpose for which the product was obtained—may affect the product's performance and/or may cause the product's actual behavior to deviate from its behavior in the laboratory. None of these factors are within Dymax's control. Conclusions about the behavior of the product under the user's particular conditions, and the product's suitability for a specific purpose, cannot be drawn from the information contained in this document.

It is the user's responsibility to determine (i) whether a product is suitable for the user's particular purpose or application and (ii) whether it is compatible with the user's intended manufacturing process, equipment, and methods. Under no circumstances will Dymax be liable for determining such suitability or compatibility. Before the user sells any item that incorporates Dymax's product, the user shall adequately and repetitively test the item in accordance with the user's procedures and protocols. Unless specifically agreed to in writing, Dymax will have no involvement in, and shall under no circumstances be liable for, such testing.

Dymax makes no warranties, whether express or implied, concerning the merchantability of this product or its fitness for a particular purpose. Nothing in this document should be interpreted as a warranty of any kind. Under no circumstances will Dymax be liable for any injury, loss, expense or incidental or consequential damage of any kind allegedly arising in connection with the user's handling, processing, or use of the product. It is the user's responsibility to adopt appropriate precautions and safeguards to protect persons and property from any risk arising from such handling, processing, or use.

The specific conditions of sale for this product are set forth in Dymax's Conditions of Sale which are available at https://www.dymax.com/index.php/en/resources/sales-terms-conditions. Nothing contained herein shall act as a representation that the product use or application is free from patents owned by Dymax or any others. Nothing contained herein shall act as a grant of license under any Dymax Corporation Patent.

Except as otherwise noted, all trademarks used herein are trademarks of Dymax. The " \mathfrak{B} " symbol denotes a trademark that is registered in the U.S. Patent and Trademark Office.

The contents of this document are subject to change. Unless specifically agreed to in writing, Dymax shall have no obligation to notify the user about any change to its content.